skip to main content


Search for: All records

Creators/Authors contains: "Snyder, Shane A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract Background Firefighters have increased cancer incidence and mortality rates compared to the general population, and are exposed to multiple products of combustion including known and suspected carcinogens. Objective The study objective was to quantify fire response exposures by role and self-reported exposure risks. Methods Urinary hydroxylated metabolites of polycyclic aromatic hydrocarbons (PAH-OHs) were measured at baseline and 2–4 h after structural fires and post-fire surveys were collected. Results Baseline urine samples were collected from 242 firefighters. Of these, 141 responded to at least one of 15 structural fires and provided a post-fire urine. Compared with baseline measurements, the mean fold change of post-fire urinary PAH-OHs increased similarly across roles, including captains (2.05 (95% CI 1.59–2.65)), engineers (2.10 (95% CI 1.47–3.05)), firefighters (2.83 (95% CI 2.14–3.71)), and paramedics (1.84 (95% CI 1.33–2.60)). Interior responses, smoke odor on skin, and lack of recent laundering or changing of hoods were significantly associated with increased post-fire urinary PAH-OHs. Significance Ambient smoke from the fire represents an exposure hazard for all individuals on the fireground; engineers and paramedics in particular may not be aware of the extent of their exposure. Post-fire surveys identified specific risks associated with increased exposure. 
    more » « less